Chapitre 34

Probabilités 1 – Variable aléatoire

Plan du chapitre

1	Univers et probabilités				
	1.1	Univers	.]		
	1.2	Espaces probabilisés	. 3		
	1.3	Construction de probabilités	. 4		
	1.4	Exemples d'expériences aléatoires	. 5		
2	Variable aléatoire		. 6		
	2.1	Variable aléatoire	. 6		
	2.2	Notations incontournables	. 7		
	2.3	Opérations sur les v.a	. 9		
3	Loi d'une variable aléatoire				
	3.1	Définition et propriétés "héritées"	. 9		
	3.2	Lois usuelles	. 11		
	3.3	Propriétés sur les lois	. 13		

Hypothèse

Dans tout ce chapitre, Ω désigne un univers fini et \mathbb{P} est une probabilité définie sur Ω (cf définitions ci-dessous).

E, F sont des ensembles quelconques. \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Univers et probabilités

En probabilités, on travaille fondamentalement sur les mêmes objets que ceux qu'on a déjà vus, mais on utilise un vocabulaire différent, que l'on va introduire ici.

1.1 Univers

Définition 34.1

On appelle <u>univers</u> un ensemble non vide (généralement noté Ω). Dans ce chapitre, on se restreint aux univers finis, càd aux univers Ω qui ont un nombre fini d'éléments.

L'univers est choisi de telle sorte que, pour une expérience aléatoire donnée, chaque résultat possible correspond à un élément de Ω .

Exemple 1. Si on lance une pièce, les deux résultats possibles sont Pile (P) et Face (F). On peut donc prendre $\Omega = \{P, F\}$, ou de manière équivalente $\Omega = \{0, 1\}$ si on associe 0 à Pile et 1 à Face.

Exemple 2. Si on lance un dé à six faces, on prendra l'univers

$$\Omega = [1, 6] = \{1, 2, 3, 4, 5, 6\}$$

Exemple 3. Si on lance deux dés à six faces, on prendra l'univers

$$\Omega = \dots \dots \dots \dots$$

Définition 34.2

Une partie $A \subset \Omega$ est appelée un événement.

Un singleton $\{\omega\} \subset \Omega$ est appelé un événement élémentaire.

Un élément $\omega \in \Omega$ est appelé un résultat ou encore une issue.

Un événement n'est donc rien d'autre qu'un sous-ensemble d'un univers. L'ensemble de tous les événements correspond donc à $\mathcal{P}(\Omega)$.

Exemple 4. Si on lance un dé à six faces, l'événement "le résultat du dé est pair" correspond à

$$A = \{2, 4, 6\} \subset \Omega$$

L'événement "le résultat du dé est un nombre premier impair" correspond à

$$B = \{3,5\} \subset \Omega$$

Définition 34.3

Deux événements A et B sont dits disjoints (ou incompatibles) si $A \cap B = \emptyset$.

Exemple 5. Les deux événements A et B de l'exemple précédent sont incompatibles. Si A est un événement, alors A est incompatible avec son complémentaire \overline{A} .

Définition 34.4

Soit $n \in \mathbb{N}^*$. Une famille d'événements (A_1, \dots, A_n) de Ω est appelé un <u>système complet d'événements</u> (S.C.E.) de Ω si :

- Pour tous $i, j \in [1, n]$, si $i \neq j$, alors $A_i \cap A_j = \emptyset$.
- $\bullet \bigcup_{i=1}^n A_i = \Omega.$

Cela revient presque à dire que les $(A_i)_{1 \le i \le n}$ forment une partition de Ω : il faudrait pour cela rajouter la condition que chaque ensemble A_i soit non vide. En pratique, on permet aux ensembles A_i d'être vides pour écrire plus facilement certaines propositions.

Exemple 6. Pour tout événement A de Ω , la famille (A,\overline{A}) forme un système complet d'événements de Ω .

Exemple 7. La famille des événements élémentaires $(\{\omega\})_{\omega \in \Omega}$ forme un système complet d'événements de Ω . Dans l'exemple du dé à six faces, ce système complet d'événements correspond à

$$\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}$$

2/14 G. Peltier

1.2 Espaces probabilisés

Définition 34.5

On appelle <u>probabilité</u> sur Ω toute application $\mathbb P$ définie sur $\mathcal P(\Omega)$ à valeurs dans [0,1] telle que

- $\mathbb{P}(\Omega) = 1$
- Additivité : Pour tous événements $A, B \subset \Omega$ disjoints, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

On dit alors que (Ω, \mathbb{P}) est un espace probabilisé (fini car Ω est fini).

Propriété 34.6

Soit (Ω, \mathbb{P}) un espace probabilisé, et A, B deux événements de Ω . Alors

- 1. $\mathbb{P}(\varnothing) = 0$
- 2. $\mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$
- 3. Si $A \subset B$, alors $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$
- 4. Si $A \subset B$ alors $\mathbb{P}(A) \leq \mathbb{P}(B)$
- 5. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Démonstration. On montre les assertions dans l'ordre 3-4-2-1-5.

Montrons 2. À partir de l'assertion 3 avec $B = \Omega$, on a

$$\underbrace{\mathbb{P}(\Omega \setminus A)}_{=\mathbb{P}(\overline{A})} = \underbrace{\mathbb{P}(\Omega)}_{=1} - \mathbb{P}(A)$$

d'où l'assertion 2. Maintenant, en prenant $A = \Omega$ dans l'assertion 2, on obtient l'assertion 1:

$$\mathbb{P}(\varnothing) = \mathbb{P}(\overline{\Omega}) = \mathbb{P}(\Omega) - \mathbb{P}(\Omega) = 0$$

Enfin, montrons l'assertion 5. On écrit $A \cup B$ comme une union disjointe d'ensembles :

$$A \cup B = A \cup (B \setminus A) = A \cup (B \setminus (A \cap B))$$

Par la définition et par 3, on a donc

$$\begin{split} \mathbb{P}(A \cup B) &= \mathbb{P}(A) + \mathbb{P}(B \setminus (A \cap B)) \\ &= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \qquad \operatorname{car} A \cap B \subset B \end{split}$$

G. Peltier 3/14

Exemple 8. Pour tout événement $A \subset \Omega$, on peut définir

$$\mathbb{P}(A) := \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}$$

Il s'agit d'une probabilité sur Ω appelée probabilité uniforme.

Propriété 34.7

Si (A_1, \dots, A_n) est un système complet d'événements de Ω , alors

$$\sum_{i=1}^{n} \mathbb{P}(A_i) = 1$$

et plus généralement, pour tout événement $B\subset \Omega$

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B \cap A_i)$$

Démonstration. Comme A_1, \dots, A_n sont disjoints deux à deux, on peut utiliser la propriété d'additivité (généralisée à n ensembles) :

$$\mathbb{P}(A_1) + \cdots + \mathbb{P}(A_n) = \mathbb{P}(A_1 \cup \cdots \cup A_n) = \mathbb{P}(\Omega) = 1$$

De même, les ensembles $(B \cap A_i)_{1 \le i \le n}$ sont disjoints deux à deux et leur réunion est B, ce qui donne la deuxième formule.

1.3 Construction de probabilités

Définition 34.8

Soit E un ensemble fini non vide. On appelle <u>distribution de probabilités</u> sur E, toute famille $(p_{\omega})_{\omega \in E}$ telle que

- Pour tout $\omega \in E$, on a $0 \le p_{\omega} \le 1$.
- $\bullet \ \sum_{\omega \in \Omega} p_{\omega} = 1$

On notera que comme Ω est fini, la somme ci-dessus ne contient qu'un nombre fini de termes.

Exemple 9. Si $\Omega = \{1, 2, 3, 4, 5, 6\}$ alors en posant

$$p_1 = p_2 = \dots = p_5 = \frac{1}{10}$$
 et $p_6 = \frac{1}{2}$

la famille $(p_k)_{1 \le k \le 6}$ est une distribution de probabilités sur Ω .

Propriété 34.9

Soit $\mathbb P$ une probabilité sur Ω . Alors en notant pour tout $\omega \in \Omega$

$$p_{\boldsymbol{\omega}} := \mathbb{P}(\{\boldsymbol{\omega}\})$$

La famille $(p_{\omega})_{\omega \in \Omega}$ est une distribution de probabilités sur Ω .

4/14 G. Peltier

Démonstration. Par définition, une probabilité \mathbb{P} est à valeurs dans [0,1] donc il est clair que $0 \le p_{\omega} \le 1$. Ensuite, par additivité,

$$\sum_{\omega \in \Omega} p_{\omega} = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \mathbb{P}\left(\bigcup_{\omega \in \Omega} \{\omega\}\right) = \mathbb{P}(\Omega) = 1$$

Propriété 34.10 (Construction de probabilités)

Réciproquement, si $(q_{\omega})_{\omega \in \Omega}$ est une distribution de probabilités, alors il existe une unique probabilité \mathbb{P} sur Ω telle que

$$\mathbb{P}(\{\boldsymbol{\omega}\}) := q_{\boldsymbol{\omega}}$$

et dans ce cas, pour tout $A \subset \Omega$,

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\}) = \sum_{\omega \in A} q_{\omega}$$

La Proposition ci-dessus montre qu'il suffit de connaître \mathbb{P} sur les événements élémentaires $\{\omega\}$ avec $\omega \in \Omega$ pour déterminer totalement \mathbb{P} (càd les valeurs prises par $\mathbb{P}(A)$ pour $A \subset \Omega$).

Exemple 10. La probabilité uniforme (cf exemple 8) peut être construite (et est entièrement déterminée) en posant

$$\forall \omega \in \Omega \qquad \mathbb{P}(\{\omega\}) = \frac{1}{\operatorname{card}(\Omega)}$$

1.4 Exemples d'expériences aléatoires

Pour une expérience aléatoire donnée, on peut construire une probabilité $\mathbb P$ qui reflète justement la probabilité qu'un résultat $\omega \in \Omega$ se produise.

Exemple 11. On lance un dé équilibré à six faces. L'univers correspondant est

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Si le dé est équilibré, alors la probabilité \mathbb{P} correspondante est la probabilité uniforme :

$$\forall \omega \in \Omega \qquad \mathbb{P}(\{\omega\}) = \frac{\operatorname{card}(\{\omega\})}{\operatorname{card}(\Omega)} = \frac{1}{6}$$

Par exemple, la probabilité d'obtenir un résultat pair est donc :

$$A = \{2,4,6\} \implies \mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)} = \frac{3}{6} = \frac{1}{2}$$

Exemple 12. On suppose maintenant que le dé est pipé. Il y a une chance sur deux que le résultat soit 6, les autres résultats étant équiprobables. Quelle est la probabilité $\mathbb P$ correspondante ? Quelle est la probabilité d'obtenir un résultat pair ?

G. Peltier 5 / 14

Le formalisme ci-dessus, à savoir un univers Ω et une probabilité $\mathbb P$, ne permet pas toujours de traiter efficacement un problème en probabilité. Il est fréquent qu'on s'intéresse non pas à la valeur du résultat $\omega \in \Omega$, mais à la valeur d'une fonction qui dépend de ω . Par exemple, on lance trois dés à six faces et on souhaite évaluer la probabilité que la somme des valeurs des deux premiers dés est égale à la valeur du troisième. Dans ce cas, l'univers est $\Omega = [\![1,6]\!] \times [\![1,6]\!] \times [\![1,6]\!]$ que l'on munit de la probabilité uniforme $\mathbb P$. Un résultat ω est de la forme $(i,j,k) \in \Omega$, avec i,j,k les valeurs respectives du premier, deuxième et troisième dés. On cherche alors la probabilité que i+j=k, donc :

$$\mathbb{P}\left(\{(1,1,2),\,(1,2,3),\,(2,1,3),\cdots,(3,3,6),\,(4,2,6),\,(5,1,6)\}\right)$$

Mais si on définit $f(\omega) = f(i, j, k) = i + j - k$, alors cette probabilité s'écrit plus succintement

$$\mathbb{P}(\{\boldsymbol{\omega} \in \Omega \mid f(\boldsymbol{\omega}) = 0\})$$

L'introduction de cette fonction f permet donc de reformuler et d'exprimer plus clairement les événements dont on veut calculer la probabilité. On appelle cette fonction f une *variable aléatoire* et on la note en général X.

2 Variable aléatoire

2.1 Variable aléatoire

Définition 34.11

On appelle <u>variable aléatoire</u> (abrégé <u>v.a.</u>) sur (un univers fini) Ω toute application de Ω dans un ensemble E.

On dit qu'une variable aléatoire est réelle (abrégé v.a.r.) si $E \subset \mathbb{R}$, et complexe si $E \subset \mathbb{C}$.

On note généralement X ou Y une variable aléatoire. Une variable aléatoire X est donc une fonction dont la valeur dépend du résultat de l'expérience aléatoire : à chaque résultat $\omega \in \Omega$, on associe une valeur $X(\omega) \in E$.

Exemple 13. On lance un dé à six faces, de sorte qu'on prend l'univers $\Omega = [1, 6]$. La variable aléatoire

$$X(\boldsymbol{\omega}) = \boldsymbol{\omega}^2$$

correspond à la fonction qui au résultat du dé associe son carré. On peut prendre alors $E = \{1, 4, \cdots, 36\}$ mais on peut tout aussi bien prendre $E = \mathbb{R}$. C'est donc une v.a.r.

6 / 14 G. Peltier

Malgré ce nom, une variable aléatoire X n'est ni une variable, ni aléatoire. Ce n'est pas une variable, mais une application. Elle n'est pas non plus aléatoire en soi : l'aléatoire se situe au niveau de l'expérience, qui va déterminer le résultat ω obtenu en fonction d'une certaine probabilité \mathbb{P} .

Définition 34.12

Soit A un événement de Ω . Alors on note $\mathbf{1}_A$ la variable aléatoire réelle suivante :

$$\mathbf{1}_A: \Omega \to \{0, 1\}$$

$$x \mapsto \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

Cette v.a.r. est appelée indicatrice de A.

2.2 Notations incontournables

• Soit $X : \Omega \to E$ une v.a. et A une **partie de** E. Alors on note, de deux façons possibles :

$$\left\{ \begin{array}{l} \{X \in A\} \\ (X \in A) \end{array} \right\} := X^{-1}(A) = \left\{ \boldsymbol{\omega} \in \Omega \mid X(\boldsymbol{\omega}) \in A \right\} \qquad \subset \Omega$$

Comme $A \subset E$, l'ensemble A n'est pas un événement. Par contre, $\{X \in A\}$ est un événement car il est inclus dans Ω ; c'est l'ensemble des $\omega \in \Omega$ tels que $X(\omega) \in A$.

• Comme $\{X \in A\}$ est un événement, on peut en particulier évaluer sa valeur avec une probabilité \mathbb{P} . Pour alléger les notations, on écrit généralement

$$\mathbb{P}(X \in A) := \mathbb{P}(\{X \in A\}) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in A\})$$

La valeur de $\mathbb{P}(X \in A)$ équivaut à la "probabilité" que $X(\omega)$ soit dans la partie A (où ω est un résultat d'une expérience aléatoire).

• On peut définir d'autres événements à partir de X : pour tout $x \in E$

$${X = x} := {\omega \in \Omega \mid X(\omega) = x}$$

Et si $E = \mathbb{R}$,

$${X \le x} := {\omega \in \Omega \mid X(\omega) \le x}$$

$${X \ge x} := {\omega \in \Omega \mid X(\omega) \ge x}$$

$$\{X < x\} := \{\omega \in \Omega \mid X(\omega) < x\}$$

$$\{X > x\} := \{\omega \in \Omega \mid X(\omega) > x\}$$

• On peut, là encore, évaluer la probabilité de ces événements :

$$\mathbb{P}(X = x)$$
 $\mathbb{P}(X \le x)$ etc.

• Plus généralement si $\mathfrak P$ est une propriété qui est vérifiée ou non par un élémént de E, l'événement $\{X \text{ vérifie } \mathfrak P\}$ est défini comme l'ensemble des $\omega \in \Omega$ tels que $X(\omega)$ vérifie $\mathfrak P$. On peut donc écrire les événements

$$\{X \in 2\mathbb{N}\}$$
 $\{X \text{ est premier}\}$ $\{X^2 - X \ge 0\}$

et évaluer leur probabilité.

G. Peltier 7 / 14

Exemple 14. Soit *A* un événement (donc $A \subset \Omega$). On considère la v.a.r. $X = \mathbf{1}_A$. Alors

$$\{\mathbf{1}_A = 1\} = \dots$$
 $\{\mathbf{1}_A = 0\} = \dots$

et pour tout $x \in \mathbb{R} \setminus \{0,1\}$,

$$\{1_A = x\} = \dots$$

En particulier,

$$\mathbb{P}(\mathbf{1}_A = 1) = ...$$

Exemple 15. On lance une pièce (équilibrée) 3 fois et on note *X* la v.a. qui correspond au nombre de "pile" obtenus. Alors (on justifiera proprement ces calculs ultérieurement) :

$$\mathbb{P}(X = 0) = ...$$

$$\mathbb{P}(X = 3) = ...$$

$$\mathbb{P}(X = 1) = ...$$

$$\mathbb{P}(X \le 1) = \dots$$

$$\mathbb{P}(X > 3) = ...$$

Propriété 34.13

Soit $X : \Omega \to E$ une v.a. et A, B deux **parties de** E. Alors

$$\{X \in A \cup B\} = \{X \in A\} \cup \{X \in B\}$$

$$\{X \in A \cap B\} = \{X \in A\} \cap \{X \in B\}$$

$$\{X \in E \setminus A\} = \overline{\{X \in A\}}$$

Démonstration. On a vu au chapitre 4 que pour une application f, on a $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, d'où, pour f = X:

$${X \in A \cup B} = X^{-1}(A \cup B) = X^{-1}(A) \cup X^{-1}(B) = {X \in A} \cup {X \in B}$$

De même pour $\{X \in A \cap B\}$. Enfin,

$${X \in E \setminus A} = X^{-1}(E \setminus A) = \Omega \setminus X^{-1}(A) = \overline{X^{-1}(A)} = \overline{\{X \in A\}}$$

Propriété 34.14

Avec les mêmes hypothèses que précédemment, si A,B sont disjoints, alors $\{X \in A\}$ et $\{X \in B\}$ aussi, donc :

$$\mathbb{P}(X \in A \cup B) = \mathbb{P}((X \in A) \cup (X \in B)) = \sup_{\text{si } A, B \text{ sont disjoints}} \mathbb{P}(X \in A) + \mathbb{P}(X \in B)$$

8 / 14 G. Peltier

2.3 Opérations sur les v.a.

Si X,Y sont des v.a. réelles ou complexes définies sur Ω , alors ce sont des applications de Ω dans \mathbb{K} , donc des éléments de $\mathcal{F}(\Omega,\mathbb{K})=\mathbb{K}^{\Omega}$. On a vu en particulier que $\mathcal{F}(\Omega,\mathbb{K})$ possède une structure d'e.v. et d'anneau, ce qui, pour tous $f,g\in\mathcal{F}(\Omega,\mathbb{K})$, donne un sens aux applications f+g, λf et fg. De même, on peut définir d'autres v.a.r. à partir de X,Y:

$$X+Y: m{\omega} \mapsto X(m{\omega}) + Y(m{\omega})$$

Pour tout $\lambda \in \mathbb{K}$ $\lambda X: m{\omega} \mapsto \lambda X(m{\omega})$
 $XY: m{\omega} \mapsto X(m{\omega})Y(m{\omega})$

Attention! Ces opérations ne sont a priori pas définies si X,Y sont à valeurs dans un ensemble E quelconque.

Exemple 16. Si X est une v.a.r. définie sur Ω

$$\{X^2 \ge 0\} = \dots$$
 donc $\mathbb{P}(X^2 \ge 0) = \dots$

Définition 34.15 (Composition)

Soit $X:\Omega\to E$ une v.a. et $f:E\to F$ une application. Alors on note $f(X):=f\circ X$. Il s'agit d'une v.a. définie sur Ω à valeurs dans F:

$$f(X): \Omega \to F$$

 $\omega \mapsto f(X(\omega))$

On peut donc, sous réserve que cela ait un sens, considérer les v.a.

$$\sqrt{X}$$
, $\ln X$, e^X , etc.

3 Loi d'une variable aléatoire

3.1 Définition et propriétés "héritées"

Propriété 34.16

Soit $X : \Omega \to E$ une v.a. (et \mathbb{P} une probabilité sur Ω). On pose l'application

$$\mathbb{P}_X: \mathcal{P}(E) \to [0,1]$$
$$A \mapsto \mathbb{P}(X \in A)$$

 \mathbb{P}_X est une probabilité **sur** E (et non Ω) appelée loi de X.

Démonstration. On vérifie facilement que $\{X \in E\} = \Omega$ donc $\mathbb{P}_X(E) = \mathbb{P}(X \in E) = 1$.

Ensuite, par la Proposition 34.14, on vérifie l'additivité de \mathbb{P}_X .

G. Peltier 9 / 14

 \mathbb{P}_X hérite ainsi des propriétés vérifiées par toute probabilité :

Propriété 34.17

Soit $X : \Omega \to E$ une v.a. (et \mathbb{P} une probabilité sur Ω). Soit A, B deux **parties de E.** Alors :

- 1. $\mathbb{P}_X(E) = \mathbb{P}(X \in E) = 1$
- 2. $\mathbb{P}_X(\varnothing) = \mathbb{P}(X \in \varnothing) = 0$
- 3. $\mathbb{P}(X \in \overline{A}) = 1 \mathbb{P}(X \in A)$
- 4. Si A, B sont disjointes, on a

$$\mathbb{P}(X \in A \cup B) = \mathbb{P}(X \in A) + \mathbb{P}(X \in B)$$

5. Si $A \subset B$, alors

$$\mathbb{P}(X \in A) \leq \mathbb{P}(X \in B)$$

6.

$$\mathbb{P}(X \in A \cup B) = \mathbb{P}(X \in A) + \mathbb{P}(X \in B) - \mathbb{P}(X \in A \cap B)$$

7. Pour tout $x \in E$, on note

$$\mathbb{P}(X = x) := \mathbb{P}_X(\{x\}) = \mathbb{P}(X \in \{x\})$$

La famille $(\mathbb{P}(X=x))_{x\in E}$ est une distribution de probabilités, qui de plus détermine entièrement la loi \mathbb{P}_X : pour tout $A\subset E$, on a

$$\mathbb{P}(X \in A) = \sum_{x \in A} \mathbb{P}(X = x)$$

8. Réciproquement, si $(p_x)_{x \in E}$ est une distribution de probabilités, il existe une unique loi \mathbb{P}_X telle que

$$\mathbb{P}_X(\{x\}) = p_x$$

La famille $(\mathbb{P}(X=x))_{x\in E}$ détermine entièrement \mathbb{P}_X , mais pas X: on peut en effet trouver des v.a. différentes X_1, X_2 telles que $\mathbb{P}_{X_1} = \mathbb{P}_{X_2}$, cf exemple 23.

Remarque. E peut tout à fait être infini, donc une partie $A \subset E$ également. Pourtant, la somme $\sum_{x \in A} \mathbb{P}(X = x)$ a bien un sens : en effet, l'ensemble des valeurs prises par X, à savoir

$$X(\Omega) := \{X(\omega) \mid \omega \in \Omega\}$$

est fini avec $\operatorname{card}(X(\Omega)) \leq \operatorname{card}(\Omega)$. Ainsi, si $x \notin X(\Omega)$, on a

$${X = x} = X^{-1}({x}) = \varnothing$$
 donc $\mathbb{P}(X = x) = 0$

Au final, on peut donc réécrire

$$\sum_{x \in A} \mathbb{P}(X = x) = \sum_{x \in A \cap X(\Omega)} \mathbb{P}(X = x)$$

et cette dernière somme ne fait intervenir qu'un nombre fini de termes, donc a toujours un sens.

10 / 14

3.2 Lois usuelles

La loi \mathbb{P}_X est définie sur $\mathcal{P}(E)$, ainsi $\mathbb{P}_X(A) = \mathbb{P}(X \in A)$ n'a de sens que si $A \subset E$. Dans la pratique, connaître la loi \mathbb{P}_X nous suffit pour calculer des probabilités. Ainsi :

- plutôt que de donner explicitement l'application X, i.e. la valeur de $X(\omega)$ pour tout $\omega \in \Omega$...
- ... on s'intéresse en fait aux valeurs de $\mathbb{P}_X(A) = \mathbb{P}(X \in A)$ lorsque A parcourt $\mathcal{P}(E)$.

Ainsi, pour peu qu'on connaisse la loi de X (i.e. \mathbb{P}_X), on peut se passer de Ω . Dans les définitions de cette section, on verra qu'il n'est pas utile de préciser l'ensemble Ω .

On va définir un certain nombre de lois. Par le dernier point de la Proposition 34.17, il suffit pour cela de se donner un ensemble E et une distribution de probabilités $(p_x)_{x\in E}$ avec $p_x:=\mathbb{P}_X(X=x)$. Cela déterminera entièrement la loi \mathbb{P}_X .

Définition 34.18 (Loi uniforme)

On suppose E fini non vide. On dit qu'un v.a. $X:\Omega\to E$ suit une <u>loi uniforme sur E</u>, ce qu'on notera $X\sim \mathcal{U}(E)$, si

$$\forall x \in E$$
 $\mathbb{P}(X = x) = \frac{1}{\operatorname{card}(E)}$

Dans ce cas,

$$\forall A \in \mathcal{P}(E)$$
 $\mathbb{P}(X \in A) = \frac{\operatorname{card}(A)}{\operatorname{card}(E)}$

On peut vérifier que $(\mathbb{P}(X=x))_{x\in E}$ est bien une densité de probabilités : $\sum_{x\in E}\mathbb{P}(X=x)=\sum_{x\in E}\frac{1}{\mathrm{card}(E)}=1$.

Exemple 17. Une urne contient n boules numérotées de 1 à n. On prend une boule au hasard et on note X le numéro de la boule tirée. Alors $X \sim \mathcal{U}([1,n])$, i.e.

$$\forall i \in [1, n]$$
 $\mathbb{P}(X = i) = \frac{1}{n}$

En particulier, la probabilité qu'on tire un numéro pair est, en posant $A=2\mathbb{N}\cap \llbracket 1,n\rrbracket$, donnée par :

$$\mathbb{P}(X \in A) = \frac{\operatorname{card}(A)}{\operatorname{card}(E)} = \frac{1}{n} \times \begin{cases} n/2 & \text{si } n \in 2\mathbb{N} \\ (n-1)/2 & \text{si } n \in 2\mathbb{N} + 1 \end{cases}$$

Exemple 18. Un jeu de cartes contient 4 couleurs $(\P, \blacklozenge, \clubsuit, \clubsuit)$ et 13 valeurs (1, 2, 3, ..., 10, V, D, R). On tire une carte au hasard et on note X la valeur de la carte tirée (avec V = 11, D = 12, R = 13). Alors $X \sim \mathcal{U}(\llbracket 1, 13 \rrbracket)$, i.e.

$$\forall i \in [1, 13] \qquad \mathbb{P}(X = i) = \frac{1}{13}$$

Si on note Y la couleur de la carte tirée, alors ...

Comme on peut le voir, dans les deux exemples ci-dessus, il n'est pas nécessaire d'expliciter l'univers Ω .

G. Peltier 11 / 14

Définition 34.19 (Loi de Bernoulli)

Soit $p \in [0,1]$. On dit qu'une v.a. X suit une <u>loi de Bernoulli de paramètre p</u>, si X est à valeurs dans $\{0,1\}$ et

$$\mathbb{P}(X=1) = p \qquad \text{et} \qquad \mathbb{P}(X=0) = 1 - p$$

On notera $X \sim \mathcal{B}(p)$

La loi de Bernoulli représente une expérience simple avec seulement deux résultats possibles :

- Le cas X = 1 représente un "succès", ce qui arrive avec probabilité p.
- Le cas X = 0 représente un "échec", ce qui arrive avec probabilité 1 p.

Exemple 19. Si on lance une pièce et qu'on note X la v.a.r. qui vaut 1 si le résultat est face, 0 si c'est pile, alors X suit une loi de Bernoulli de paramètre $p = \frac{1}{2}$ (si la pièce est équilibrée)

Exemple 20. Si A est un évènement (de Ω), alors la v.a.r. $\mathbf{1}_A$ vérifie

$$\mathbb{P}(\mathbf{1}_A = 1) = \dots \qquad \qquad \mathsf{donc} \quad \mathbb{P}(\mathbf{1}_A = 0) = \dots$$

donc $\mathbf{1}_A$ suit une loi de Bernoulli de paramètre ...

Définition 34.20 (Loi binomiale)

Soit $p \in [0,1]$ et $n \in \mathbb{N}^*$. On dit qu'une v.a. X suit une <u>loi binomiale de paramètre (n,p)</u>, si X est à valeurs dans [0,n] et

$$\forall k \in [0, n] \qquad \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

On notera $X \sim \mathcal{B}(n,p)$.

 $D\'{e}monstration$. Il faut vérifier que ceci définit bien une loi. Il faut donc s'assurer que la famille $(\mathbb{P}(X=k))_{k\in \llbracket 0,n\rrbracket}$ est bien une distribution de probabilités. Il est clair que $\mathbb{P}(X=k)\geq 0$. Montrons que $\sum_{k=0}^n \mathbb{P}(X=k)=1$, ce qui entrainera en particulier que $\mathbb{P}(X=k)\leq 1$ et concluera. Par la formule du binôme,

$$\sum_{k=0}^{n} \mathbb{P}(X=k) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = (p+1-p)^{n} = 1^{n} = 1$$

d'où le résultat. □

Remarque. On verra ultérieurement que, si on répète n fois une expérience de Bernoulli de paramètre p, alors le nombre total de succès obtenu correspond à la loi biômiale $\mathcal{B}(n,p)$. Autrement dit, si $X \sim \mathcal{B}(n,p)$, alors $\mathbb{P}(X=k)$ correspond à la probabilité d'avoir k succès après n tentatives $indépendantes^1$, où chaque tentative a la probabilité p d'être un succès.

12 / 14

^{1.} Ce terme sera défini ultérieurement

Exemple 21. On lance *n* fois une pièce équilibrée. Si *X* compte le nombre total de piles obtenu, alors *X* suit une loi binomiale :

$$X \sim \mathcal{B}\left(n, \frac{1}{2}\right)$$

Exemple 22. On dispose d'une urne avec un nombre indéfini de boules mais une proportion $p \in [0,1]$ d'entre elles sont blanches. On tire n boules avec remise. Si X compte le nombre total de boules blanches tirées, alors X suit une loi binomiale :

$$X \sim \mathcal{B}(n, p)$$

3.3 Propriétés sur les lois

Définition 34.21

Soit X,Y deux v.a. à valeurs dans le même ensemble E. On dit que X et Y ont (ou suivent la) $\underline{\text{même loi}}$ si $\mathbb{P}_X = \mathbb{P}_Y$, càd

$$\forall A \in \mathcal{P}(E)$$
 $\mathbb{P}(X \in A) = \mathbb{P}(Y \in A)$

ou encore

$$\forall x \in E$$
 $\mathbb{P}(X = x) = \mathbb{P}(Y = x)$

On notera $X \sim Y$. Il s'agit d'une relation d'équivalence.

Attention, $X \sim Y$ ne signifie pas X = Y!

Exemple 23. Soit X, Y deux v.a. telles que $X \sim \mathcal{B}\left(\frac{1}{2}\right)$ et Y = 1 - X. Montrer que X et Y ont même loi.

Propriété 34.22 (Loi de f(X))

Soit $X: \Omega \to E$ une v.a. et $f: E \to F$. La loi de la v.a. $f(X): \Omega \to F$ est donnée par

$$\forall y \in F$$
 $\mathbb{P}(f(X) = y) = \sum_{x \in E, f(x) = y} \mathbb{P}(X = x)$

Exemple 24. Soit X une v.a. telle que $X \sim \mathcal{U}(\llbracket -2,2 \rrbracket)$. Déterminer la loi de X^2 .

G. Peltier 13 / 14

14 / 14 G. Peltier